LAUR-g5=-3298

spomsaored by an ageacy of the United States

Gowcramcst sor any ageacy thereol, aor any of their

or implicd, or assumses any legal Eability or respoasi-

accaracy, or uscfulncss of any iaformation, apparates, prodect, or
mﬁhdcmhhmmﬂmﬂripmmmm-
or otherwise does mot mecessarily comstitute or imply its eadorsement, recom-
sccessarily state or reflect those of the

fﬂbhuﬂww«mmw.mm’

eace herein o any specific comsacrcial prodect, process, or service
opimions of awthors cxpressed herein do st

This report was prepared as aa accoust of work

Goverament. Neither the United States
employees, makes any warrasty, cxpress
bility for the . complctencas,
massfacturer,

meadation, or

=z
p_J
-
o

NA

P

Title:

Author(s):

LABORATORY

CoMF-95092.57-

Shlaer-Mellor Object-Oriented Analysis and Recursive
Design, an Effective Modern Software Development
Method for Development of Computing Systems for a
Large Physics Detector

T. Kozlowski, T. A. Carey, C. F. Maguire,
D. Whitehouse, C. Witzig, and S. Sorensen

Conference on Computing in High Energy Physics
Rio de Janeiro, Brazil, September 18-22, 1995

MASTER

Los Alsmas National Laboratory, an aftirmative action/equal opportunity empidyer. is operaied by the University of California for the U.8. Departmant of Energy
under contract W-7408-ENQ-38. By socoeplance of this articie, the publiaher recognizes that the U.8. Government retaing a nonexciusive, royaity-iree license to
pubiish or reproduce the published form of tus contributian, or 10 allow others to do 80, for U.8, Government purposes. The Los Alamas National Laboratory

requests that the publisher identity this articie as work performed under the auspioss of the U.8. Departmaent of Energy.

s ameRiral IR i ani M MU S SR 2FAANIY 1A) IAM A NTEFN fA

Form No 836 R
ST 3619 100

About This Report
This official electronic version was created by scanning the best available paper or microfiche copy of the original report at a 300 dpi resolution. Original color illustrations appear as black and white images.

For additional information or comments, contact:

Library Without Walls Project

Los Alamos National Laboratory Research Library

Los Alamos, NM 87544

Phone: (505)667-4448

E-mail: lwwp@lanl.gov

SHLAER-MELLOR OBJECT-ORIENTED ANALYIS AND
RECURSIVE DESIGN, AN EFFECTIVE MODERN SOFTWARE
DEVELOPMENT METHOD FOR DEVELOPMENT OF
COMPUTING SYSTEMS FOR A LARGE PHYSICS DETECTOR

THOMAS KOZLOWSKI, THOMAS A. CAREY
Physics Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA

CHARLIE F. MAGUIRE
Physics Department, Vanderbilt University, Nashville, TN 37235, USA

DAVID WHITEHOUSE, CHRIS WITZIG
Physics Department, Brookhaven National Laboratory, Upton, NY 11973, USA

SOREN SORENSEN
Department of Physics, University of Tennessee, Knozville, TN 37996-1200, USA

After evaluation of several modern object-oriented methods for development of the com-
puting systems for the PHENIX detector at RHIC, we selected the Shlaer-Mellor Object-
Oriented Analysis and Recursive Design method as the most appropriate for the needs
and development environment of a large nuclear or high energy physics detector. This
paper discusses our specific needs and environment, our method selection criteria, and
major features and components of the Shiaer-Mellor method.

1 PHENIX Detector Software Development Requirements

1.1 Scope and Environment of PHENIX Computing

The PHENIX detector under construction at the Relativistic Heavy lon Collider
(RHIC) at Brookhaven National Laboratory is typical in size and environment of
other large collider detectors. An important aspect is the ten subdetectors under
development by different groups within the collaboration that mu . be integrated
(hardware and software) into the frameworks provided by core on-line and offline
systems.

Detector up-time requirements and the long lifetime of the project require high
quality and reliable software that meets functional and performance requirements
for detector operation, is relatively problem free at the outset, and is maintainable
over the lifetime of the project. The development process and methods adopted
must support a large computing effort, widely distributed geographically, and ac-
commodate integration of contributions from subsystem groups and the use of im-
ported software.

1.2 Use of a Formal Method

The need for reliability, long term support, and integration of distributed devel-
opment activities led us to require a relatively formal development process that
incorporates defined work products, regular reviews and careful documentation.
Rather than trying to develop our own processes and methods, it was decided to
survey and take advantage of modern software engineering technologies. We expect
that relying on the experience of professionals in the software development industry
well best help us meet development requirements and maximize the productivity of
the limited resources devoted to PHENIX computing.

The software engineering community has long recognized that the efforts ap-
plied to requirements analysis and design are important and have great leverage
on the efforts and costs of subsequent efforts in implementation and maintenance.
Therelore, selecting a formal method of analysis and design was a high priority goal.

2 Modern Analysis and Design Methods

Driven by the need to increase productivity and software reliability, the software
engineering community and the software development industry have developed and
used many methods for developing software. Drawing on lessons learned and ad-
vances in computing science and computing hardware, these methods have been
continually evolved. Some recent areas of interest and activity are the total devel-
opment process, object-orientation, and formal methods and notations in support of
analysis and design. Automation of elements of the development process has been
a constant theme, and it is now becoming a reality with the advent of modern high
powered workstations in combination with more rigorous and complete methods
and notations.

In the last decade there has been much research and development in object-
oriented analysis and design methods, and the discipline is maturing rapidly. Several
methods for object-oriented analysis and design are in wide use on real projects by
major software developers. Three of the most popular that are appropriate for large
real-time systems are: Booch Object-Oriented Analysis and Design !, Rumbaugh
Object Modeling Technique (OMT) ?, and Shlaer-Mellor Object-Oriented Analysis
and Recursive Design 3'4. Recently the originators of the Booch and OMT methods
have combined resources and plan to develop a new method combining features
from both predecessors. There is a wide range of CASE tool support for all popular
methods.

3 Selection of an Analysis and Design Method

3.1 Selection Criteria and Constrainis

Limited time and resources did not allow us to do an exhaustive survay and tria
use of development methods. We committed ourselves to a relatively rapid and
informal survey of major current development methods, relying on the opinions of
others and our own experiences (and prejudices) in coming up with a preliminary
selection. After a period of initial use our selection will be re-evaluated.

2

Table 1: Estimated Conformance of Evaluated Methods with Selection Criteria.

Criterion Booch Shlaer-Mellor OMT
Real-time and concurrency medium high medium
Partitioning medium high high
Completeness and consistency low high low
Doesn’t assume OO implementation low high low
Accommodates imported software medium high medium
Compatible with iterative development high medium high
Widely and successfully used high high high
Good CASE support exists high high nigh

Our analysis and design method selection criteria included the following:
e support of object-oriented analysis, design, and implementation

o explicit support for modeling real-time applicatior.s and concurrency

o effective partitioning of large systems for concurrent development

¢ specific criteria for completeness and consistency

o design or implementation not constrained to be object-oviented

¢ accommodation of imported software and sofiware systems

o compatible with an iterative development process

o widely and successfully used

good CASE support

3.2 Selection of Shlaer-Mellor OOA and Recursive Design

After studying the literature and Usenet newsgroups, attending vendor presen-
tations, drawing on our own experiences in developing software, and discussing
features and issues among ourselves, we provisionally selected the Shlaer-Mellor
method. This was admittedly an informal and somewhat subjective process. Ta-
ble 1 summatrizes our results in applyir g our criteria to the three methods.

We believe the Shlaer-Mellor method best meets our needs and environment.
We found some aspects of the method particularly attractive:

¢ The explicit partitioning, vertically into subject matter domains and horizon-
tally within domains into subsystems, simplifies concurrent and distributed
development and permits effective use of expertise in particular subject mat-
ters within the group. The explicit separation of the application domain from
the service, architecture and implementation dotnains is useful because that
while in our case the application domain (detector and data acquisition hard-
ware, and operations) is relatively stable over the lifetime of the object, the

3

project can benefit over its lifetime from new and evolving technologies for
service, architecture, and implementation domains. On the other hand, if
there is a major change in the detector, it is likely that only the OOA model
of the application domain need be changed and the corresponding software
re-generated using the same architecture as before.

¢ The fact that the method explicitly includes well defined process steps and
work products, and rigorous rules and criteria for completeness and consis-
tency allow us to leverage off the considerable experience of the method’s
developers; otherwise, we would have to develop our own process to an equiv-
alent level of detail and refine it through use. There is anecdotal evidence
in the literature that developers that modified the Shlaer-Mellor process for
their own needs usually ended up re-inventing the original process. The rigor
and completeness of the models is a foundation for simulation via actual “ex-
ecution” of the models and automated code generation.

¢ Shlaer-Mellor is widely used by many important developers of real-time and
process control applications. The originators and their company (Project
Technology) have a long history as consulants, trainers, and contractors in
development of real-time software systems. They actually use their method
on a wide variety of projects.

A negative aspect of the Shlaer-Mellor method is that the simple and limited
notation (for example, the lack of aggregation or composite objects in the formalism)
and rules, often lead to large and complex models that are hard to comprehend.
However, there is a trade off here, since in the case of a more complex notation a
much more complex set of rules (and probably extensions to the notation) would
be required to guarantee completeness and consistency. This rigor is an important
advantage of the method.

The Shlaer-Mellor method is not the best foundation for iterative development
in the style of “rapid prototyping”, because of the rigor and completeness required
for OOA models and the associated the effort required. The iaethod is more suited
to a development style in which there are widely spaced releases, each of which .s a
full implementution of 8 subset of the final system, perhaps with prototype service
and architectural domains in the earlier releases.

3.3 Support

The originators of the method, Sally Shlaer and Stephen Mell-r, founded a company
in 1988, Project Technology, which carties on their work. Th: company continues
development and refinement of the method, along with conau'ting and method
training.

Several major CASE vendots provide relatively complete support for Shlaer-
Mellor. Some provide or soon will provide simulation and . ~de genes~tion tools.
Project Technology itself has recently acquired a CASE tool vei:!nt (Briu,, noint).
We have provisionally selected the Object'Team tool set {rom Cadre '™ :hrologies,
Inc., and are currently evaluating the Bridgepoint tool set,

4

4 Overview of Shlaer-Mellor OOA and Recursive Design

The rational behind the method is well stated in the goal of Project Technology: “a
systematic, rational and controllable software development process”. The method
has developed and evolved over the years through from experience in building real-
time software systems. It is based on the central role and value of an “information
mode]” (the basis of its object-orientation).

4.1 Domains and Subsystems

The first step in creating Shlaer-Mellor models is to partition the system into “or-
thogonal” subject matter domains. A domain is “a real, hypothetical, or abstract
world inhabited by a distinct set of objects that behave according to rules and
policies characteristic of the domain” *. Domains can be of the following types:

e Application Domain: subject matter of the system from the perspective of
the user of the system.

» Service Domain: provides gencric mechanisms and utility functions as required
to support the application domain (and other service domains).

e Architectural Domain: defines a “mapping” of OOA model elements to imple-
mentation domain elements, and provides generic mechanisms and structures
for managing data and control for the system as a whole,

o Implementation Domain: languages, networks, operating systems, libraries.

Domains may be developed according to Shlaer-Mellor OOA, implemented by “con-
ventional” (non-Shlaer-Mellor) methods, or may be imported software. The work
products of domain analysis are a graphical domain chart that shows the domains
end the client/server dependency relationships between them (“bridges”), and the
accompanying textual descriptions of each domain and bridge. An example of a
domain chart for a simple data acquisition application is shown in Figure 1, The
application domain is at the top, and the implementation domains are at the bot.
tom.

Analysis of domains begins by identifying the objects that make up a domain'’s
subject matter. The method permits large domains to be partitioned into “sub-
systems” which are clusters of related objects with minimal relations with other
subsystems, A subsystem is the scope for most of the remaining modeling activi-
ties,

§.2 Fundamental Analysis Models

The method specifies the system requirements of a domain by formally defining the
conceptual entities (objects), their attributes and relations, their behavior (lifecy-
cle), and the operations they can perform. Note that the Shaler-Mellor method
uses the word “object” to designate an abstract type or “class”. and the word “in-
stance” to designate a particular instantiation. Three fundamental types of models
for analysis are defined: information, state and process models.

h

Figure 1: Example of a Domain Chart

¢ Information Model:

For each subsystem an information model is created. It consists of a graphical
diagram describing subsystem objects, their relations and their attributes, and
accompanying formal textual descriptions of all objects, relations and their
attributes. The object diagram is similar to an Entity Re!ationship Diagram
(ERD). Attributes must be single variables (not structures); an object must
contain identifier attributes that uniquely identify an instance; and relations
are formalized by referential attributes. Supertype and subtype objects (“is a”
relationships) are part of the formalism. For each instance of a subtype object
there must be an instance of a supertype object and vice versa. Associative
objects are used to model many-to-many relationships and also relationships
that may have attributes associateu with thern.

State Modele:

For each object that is identified as having a lifecycle (“active object”), a
state model is created using the Moore formalism (actions only occur on en-
tering a state). It consists of a graphical state transition diagram describing
states, transitions, events that cause transitions, actions occ'iring on enter-
ing states, and the accompanying formal textual descriptious of events and
actions. Events provide a communication mechanistn between objects, and
between objects and the outside world. Data can be associated with an event.
Actions can do calculations, create and delete instances, read and write at-
tributes, and generate events. The method includes a complete set of time
rules and event handling rules. Examples of some rules are: actions are atomic;
multiple state machines (instances of an object) can execute simultaneously;
events are never lost: an event is used up when accepted by a state machine,
The method includes a special “assigner state machine” that can be asso-
ciated with an object (usually an associative object) as a standard way to

6

model “competitive” relationships (for example, assigning a resource to a re-
quester). Timer objects are included in the formalism to exglicitly handle
time constraints.

o Process Models:

For each state that corresponds to a non-trivial action, an action dataflow
diagram (ADFD) is created. Process bubbles correspond to atomic process-
ing steps. The only allowed dataflow labels are those identified with event
data or object attributes. Stores must be identified with objects. A process
model consists of a ADFD and accompanying formal textual descriptions of
the processes. Processes must be one of five types: accessors, event gener-
ators, transformations, tests, bridges (to other domains). Object attribute
“accessor processes” are a data communication mechanism between objects.
Each process is assigned to one object in the information model (for example,
an accessor object is assigned to the object which it accesses). Many CASE
tools omit the more general process model, and instead rely on the state mode!
action descriptions to formally specify the processing.

¢ Derived models:

The method defines several models that are derivable from the fundamental
models but provide specific views of the system model that are useful to an
analyst. At the domain level these are:

- Subsystem Relationship Model: relations between subsystems

- Subsystem Communication Model: event communication between sub-
systems

- Subsystem Access Model: data (object attribute) access between sub-
systems

At the subsystem level these are:

- Object Communication Model: event communication between objects
- Object Access Model: data (object attribute) access between objects

4.3 Recursive Design

Design in the Shiaer-Mellor method resides in the choices for implementatior of
the service and architectural domains. Recursive design refers to repeatediy ap-
plying the OOA process to the application, service, and architectural domains. In
most implementations, OOA is probably not applied to all domains since some may
be imported or developed by conventional methods. The ideal sequence is to first
apply OOA to the application domain. This analysis determines requirements on
the application’s service domains. OOA is then applied to service domains in an
appropriate order. Additional requiements on service domains may be determined
through this analysis. Performance requirements and constraints from software and
hardware environments determine the architectural domain requirements. The ar-
chitectural domain can also be analyzed using OOA. Once the architectural domain

7

==
\ d TRANSLATION

OOA MODELS ARCHITECTURE

A
H

coos

Figure 2: Translation of OOA Models.

is implemented, it is applied (in reverse order) to the service and application do-
mains. The result is an implementation of the sysiem. In practice, because of prior
experience and existing knowledge in the development team, domains are usually
developed in parallel.

4.4 Architecture Domain

In most methods a design and implementation is developed by adding implementa-
tion layer elements to the application models, without a clear or formal separation
of the layers. There is really only one model of the system. Shlaer-Mellor propo-
nents refer to this as “implementation by elaboration”. The Shlaer-Mellor method,
via the architecture, translates the OOA models into the implementation. This is
referred to as “implementation by translation”. The cost of implementation us-
ing translation, since it depends on the cost of a relatively fixed and independent
architecture, can be much less than the cost of implementation using elaboration
which tends to be proportional to the size of the analysis model. In uddition, one
can see that this paradigm lends itself well to automated translation (code gen-
eration). Such capabilities are beginning to appear in CASE tools that support
the Shlaer-Mellor method. This clear separation between analysis and design is a
unique feature of the Shlaer-Mellor method. The analysis model of the applica-
tion domain or a service domain is independent of the architecture(s) that will be
developed. In a few words the method permits building of “implementation free”
applications (OOA models) and “application free” implementations (architectures).
This promotes the reuse and independent evolution of both applications and archi-
tectures. The relation between OOA models, architecture, and implementation is
shown schematically in Figure 2.
The components of an architecture have three forms:

o Mechanisms: code that can be linked into the final systern that implements
elements of the formalism (state machines, event receiving queues, etc.)

8

o Archetypes: templates for code fragments that are filled in (“populated”)
based on elements in the OOA model (for example, there may be archetypes
for C++ classes that have a direct relation to objects in the OOA model)

o Translation rules: describe how the archetypes are to be filled

The exact form and complexity of an architecture depends on the implementa-
tion environment. Architectures for multi-tasking multiple processor environments
and which use much imported software will be more complex and larger than archi-
tectures for single task, single processor, self-contained C++ environments. There is
no requirement that implementation languages be object-oriented. If they are not,
the architecture takes care of the mapping from the OOA models to the elements
of non-object-oriented implementation environment.

4.5 Some Imvlementation [ssues

The independent architectural domain allows developers to make efficient use of
personnel and their expertise. Most developers do not have to concern themselves
with implementation issues at all; on the other hand, those who are expert in
operating system, language and networking technologies can apply that expertise in
the architectural domain, without requiring a detailed knowledge of the application.

The application independent nature of architectures allows whole architectures
to be reused with minimal modification, although some tayloring to specific envi-
ronments is probably always needed. It is an opportunity for vendors to market
architectures. Project Technology has begun to do this. “Off the shelf” architec-
tures, together with automated code generation tools from CASE vendors, could
lead to a very productive code develoment process.

Another paper in this conference ® describes the specific application of the
Shlaer-Mellor method to PHENIX on-line computing. Our plans an- experiences
will be discussed in more detail there.

Acknowledgments

This work has been funded by the U.S. Department of Energy.

References

1. Grady Booch, Object Oriented Analysis and Design, Second edition (The Ben-
jamin/Cummiags Publishing Company, 1994).

2. James Rumbaugh et al, Object-Oriented Modeling and Design (Prentice Hall,
1991).

3. Sally Shlaer and Stephen J. Mellor, Object Oriented Systems Analysis, Mod-
eling the World in Data (Yourdon Press, 1988).

4. Sally Shlaer and Step! on J. Mellor, Object Lifecycles, Modeling the World in
States (Yourdon Press, 1992).

5. Chris Witzig, et al, “The application of Shlaer-Mellor Object-Oriented Ana-
lyis and Recursive Design to PHENIX On-Line Computing Systems” in the
proceedings of this conference.

